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A numerical scheme is presented for accurate simulation of fluid flow using the lattice
Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to
discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formu-
lation includes a formal, second order discretization using a Total Variation Diminishing
(TVD) scheme for the terms representing advection of the distribution function in physical
space, due to microscopic particle motion. The advantage of the LBE approach is exploited
by implementing the scheme in a new computer code to run on a parallel computing sys-
tem. Performance of the new formulation is systematically investigated by simulating four
benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2)
unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow
over a circular cylinder. For each of these flows, the present scheme is validated with the
results from Navier–Stokes computations as well as lattice Boltzmann simulations on reg-
ular mesh. It is shown that the scheme is robust and accurate for the different test prob-
lems studied.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Lattice Boltzmann Equation (LBE) offers an attractive means to simulate complex fluid flows. Here, the approach is to go
to the molecular roots of fluid motion, by computing the dynamic evolution of the particle probability distribution function,
as described by the Boltzmann kinetic equation discretized on a space–velocity lattice. Macroscopic flow-variables (velocity,
pressure, density) are recovered as moments of the local and instantaneous particle probability distribution function. Over
the last ten years, much work has been carried out on the development and application of LBE to simulate a variety of flows.
Specifically, owing to its kinetic approach, LBE is expected to perform well for flows at mesoscopic scales where continuum
assumption begins to breakdown. Several references [1–4] are available to obtain an entry to the theory and methodology of
LBE.

The paradigm shift, from a continuum mechanics based Navier–Stokes (N–S) model to kinetic theory based LBE model,
brings about two major changes in the governing equations [5]: (1) non-local effect (advective transport of momentum from
neighborhood) becomes linear, and (2) local effect (molecular transport) becomes a non-linear source term. Further, owing
to the weak-compressibility assumption, the LBE retains a hyperbolic character even for low Mach number flows in the
. All rights reserved.
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incompressible limit. As a result of these changes, numerical solution of LBE offers certain computational advantages. On the
other hand, experience has shown that the LBE model as usually implemented, suffers from disadvantages due to which it is
still struggling to compete with the N–S model for simulation of common flow problems. Some of these are, the excessive
computational times, structured mesh, difficulty of applying boundary conditions etc. The computational resource require-
ment may be effectively overcome by the relative ease of parallelization of LBE codes, particularly due to availability of large-
scale parallel computers.

In LBE, the physical spatial structure of the lattice is intrinsically coupled to the velocity-discretization of particle distri-
bution function. The advantage is the Lagrangian, exact treatment of advective transport (propagation), and hence, a zero
numerical diffusion. On the other hand, straightforward integration of the LBE on a non-uniform and/or unstructured mesh
is not possible. This leads to difficulty in adapting the mesh to complex flow-structures such as separation, vortices, shear/
boundary layers etc., and to satisfy boundary conditions on irregular geometries [6]. Such difficulty may be overcome by
decoupling the numerical mesh from the lattice structure, and taking recourse to, one of finite difference (FD) [7–9], finite
element (FE) [10–15], or finite volume (FV) [16–19] approaches. In this case, the particle advection step is solved in an Eule-
rian framework, and the problem of treatment of the advective terms reenters the solution procedure. This problem may be
effectively addressed by suitably adapting the various techniques developed to handle the advective terms in the N–S equa-
tions solution [20–27]. In fact, in recent times, a few articles dealing with this task, have started to appear in the literature
[28,29]. The FV approach and unstructured mesh technology are gaining popularity owing to their robustness and flexibility
to handle complex flow-domains. The present work is aimed at making progress in the direction of developing a formulation
of accurately solving LBE on an unstructured mesh system using a FV technique.

1.1. Types of unstructured mesh

The FV approach is based on the physical concept of satisfying the balance of different terms in the governing equation
over discrete control volumes (CV). The entire flow-domain is discretized into a large number of CV, whose shape may be
uniform (structured) or not (unstructured). Barth [30] provides an extensive theory and practical approaches of generating
unstructured mesh. In the case of 2D unstructured triangular mesh, there are primarily four different ways of defining the
control volume (see Fig. 1). The vertices of the median dual CV (Fig. 1(a)) can potentially lie outside the set of triangles defin-
ing the tessellation, thus reducing this to a poor choice. Another option is to form CV using centroid-dual (Fig. 1(b)). In this
case a vertex of the control volume is the barycenter (centroid) of a triangle associated with the control volume, and hence
always lies inside the triangle. This has been a popular choice with the CFD community, and has been followed previously for
the finite-volume LBE (hereafter FV–LBE) simulations as well. However, this poses difficulties in the treatment of boundary
conditions [31,32]. The cell-vertex mesh (Fig. 1(c)) is more suitable to the FD approach. In the present work, we develop a
formulation on a cell-centered mesh system (Fig. 1(d)). This has not been used previously for LBE, but offers significant
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Fig. 1. Different types of unstructured mesh. (a) median dual (b) centroid dual (c) vertex centered and (d) cell centered.
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advantages as shown in this paper. Here the CV coincides with a triangle, at the centroid of which the lattice is located. Very
recently, a detailed comparison with respect to accuracy and efficiency has been made for centroid dual (vertex/node-cen-
tered) and cell-centered unstructured finite-volume discretizations of viscous terms in N–S equations [33]. In contrast to a
vertex-centered system, the fixed number of interfaces (namely, three) associated with the cell-center system leads to a sim-
pler implementation with an edge-based data structure, and is well suited for the linear reconstruction procedure proposed
in this paper. Furthermore, the cell-center approach for a triangular unstructured mesh can be regarded as a natural exten-
sion of its counterpart for a rectangular structured mesh.

1.2. TVD schemes and limiters

Development of higher-order schemes with flux-limiters to solve hyperbolic conservation laws (in the context of Euler-
and N–S equations) on unstructured mesh has been one of the most significant achievements of the CFD technology
[20,30,34]. This is because, many higher-order schemes (derivatives of Godunov’s scheme) which successfully eliminate arti-
ficial diffusion on structured mesh cannot be naturally extended to unstructured mesh. Jameson and Mavriplis [24] con-
structed schemes based on continuous piecewise linear elements, and flux-corrected transport terms. Barth and Jespersen
[25] developed a universal flux-limiter for both cell-vertex and cell-centered tessellations. Frink [26] used a second-order
scheme without a flux-limiter. Tamamidis [27] proposed a fully upwind and formally second order scheme with the min-
mod limiter. Venkatakrishnan [20] observed that ‘‘. . .the unstructured grid technology is almost on par with the structured
grid technology although encumbered with additional memory and computational cells; this overhead has to be balanced
with the ability to compute flows over complex geometries and the ease of adaptation”.

In FV approach, the evaluation of advective transport flux across the cell-surfaces takes a center stage. This calls for a
knowledge of solution variables on the surface, which are reconstructed with the help of known solution at the neighboring
cells. For solutions having large local gradients, such a reconstruction procedure may lead to spurious oscillations. Therefore,
special procedures are devised to produce a high quality reconstruction (higher-order schemes) on the cell faces, leading to
accurate evaluation of surface fluxes. These are known as Total Variation Diminishing (TVD) schemes. Such TVD discretiza-
tion may be achieved by applying suitable ‘limiter functions’. These functions are designed to reduce oscillations around
steep gradient regions while allowing higher order schemes to operate elsewhere. The procedure is to add an antidiffusion
to the low-order approximation in smooth regions. The TVD approach was originally designed for 1D systems [22], but con-
siderable progress has been achieved in extending it to multi-dimensional flow computations. For higher-order upwind
schemes to work on unstructured mesh, this true multi-dimensionality should be reflected during the reconstruction stage
[20]. Furthermore, the use of limiters allows the control of numerical diffusion by achieving a higher-order solution in re-
gions where the gradients of variables are not high. As shown in this paper, the TVD methodology can be successfully ex-
tended to the solution of FV–LBE.

1.3. FD/FV-LBE schemes

He et al. [35] stretched the lattice along the coordinate directions and simply interpolated the solution on locations not
coincing with the square lattice. The key problem associated with the FD representation of LBE is that the density function is
not well defined due to the lack of a volumetric measure, and Chen [17] offered a FV formulation. Succi and his collaborators
[16] solved the integral form of LBE on a finite volume, defining a coarse-grained particle distribution function in each cell.
This already incorporated the concepts of cell-centered FV, cell-averages of distribution function, and solution reconstruc-
tion. Peng [36] proposed the integration of the differential form of the LBE in finite volumes around grid points. This method
works on unstructured grids, thus allowing an increased geometrical flexibility. However, the method suffers from substan-
tial numerical instability compared to the standard LBE models. The computational efficiency of the scheme is not compet-
itive with standard methods. Ubertini and Succi [37] emphasized the need to develop flexible and robust FV–LBE methods.
Stiebler et al. [38] introduced a least square, linear reconstruction based upwind discretization scheme for the FV–LBE. The
scheme substantially improved the stability properties even on coarser mesh with qualitatively same accuracy. Recently, the
FV–LBE has been implemented for 3D flows [39]. The calculations with FV–LBE so far are based on cell-vertex tessellation,
wherein large amount of book-keeping is required leading to increased memory-overhead costs. The application of boundary
conditions at the boundary cells also becomes critical. The cell-centered approach is an easy way for minimizing the memory
storage. Hence, herein we follow the cell-centered approach. Recently, Lee et al. [29] adopted the TVD Lax-Wendroff discret-
ization on a FD stencil for the streaming step. They concluded that the development of a monotonicity preserving LBE meth-
od on unstructured mesh is urgent for practical applications. Finally, there is a need for better treatment of boundary
conditions with unstructured mesh [38]. Considering all these, we have implemented the TVD concept on a cell-centered
mesh system for FV–LBE. A new FV–LBE code has been developed to efficiently run on a parallel computing system. Further,
we have comprehensively tested the new FV–LBE scheme for accuracy, convergence and robustness. The associated theoret-
ical analysis, including estimation of the apparent viscosity of the FV discretization, will be presented in a companion paper.

The remainder of this article is organized as follows. In Section 2, the detailed mathematical formulation and the algo-
rithm, including application of boundary conditions, of the TVD FV–LBE approach is described. In Section 3, the numerical
implementation of the formulation is briefly outlined. In Section 4, the results of simulation of four example flows are pre-
sented and discussed. Finally, in Section 5, major conclusions are summarized.
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2. Mathematical formulation

In this section, the finite volume TVD formulation of LBE simulation on unstructured mesh system is described. First the
standard LBGK equations are presented, followed by the development of FV formulation. Then the procedure for flux calcu-
lation using a higher order solution reconstruction with TVD limiters is described. Finally, the treatment of edges on the
boundary is explained.

2.1. The LBGK equation

The Boltzmann equation discretized in velocity space, and the collision term modeled with Bhatnagar–Gross–Krook
approximation is usually written (see e.g., Ref. [40]) in the following differential form:
@fa
@t
þ ea � $fa ¼ �

1
s

faðx; tÞ � f eq
a ðx; tÞ

� �
for a ¼ 0;1;2; . . . ;N: ð1Þ
Here, faðx; tÞ is the particle distribution function and s the relaxation time. Repeated Greek subscripts do not imply summa-
tion. To maintain simplicity of exposition, we consider the physical space to be 2-dimensional only ðx : R2Þ. In the most com-
monly used D2Q9 lattice ðN ¼ 8Þ, discrete particle velocities ea’s are given as,
ea ¼ c

0;0 for a ¼ 0;
cos½ða� 1Þp=4�; sin½ða� 1Þp=4� for a ¼ 1;3;5;7;ffiffiffi

2
p

cos½ða� 1Þp=4�;
ffiffiffi
2
p

sin½ða� 1Þp=4� for a ¼ 2;4;6;8;

8><
>: ð2Þ
where c ¼
ffiffiffiffiffiffiffiffiffi
3RT
p

is the constant speed for an isothermal model [40], and the physical directions of a’s are shown in Fig. 2. The
equilibrium distribution function in its p-form is the low-velocity expansion of the Maxwellian distribution,
f eq
a ¼ wa pþ p0 3

ðea � uÞ
c2 þ 9

2
ðea � uÞ2

c4 � 3
2
ðu � uÞ

c2

( )" #
: ð3Þ
This form ensures that the incompressible N–S equations are recovered in the limit of small Knudsen and Mach numbers. The
weights, wa, for the D2Q9 model are distinct:
wa ¼
4=9 for a ¼ 0;
1=9 for a ¼ 1;3;5;7;
1=36 for a ¼ 2;4;6;8:

8><
>: ð4Þ
The local and instantaneous macroscopic flow-variables may be found from the moments as,
pðx; tÞ
uðx; tÞ

� �
¼
X8

a¼0

faðx; tÞ
1

ea=p0

� �
ð5Þ
The constant p0 is set equal to 2.7. The local mass density being proportional to pressure, qðx; tÞ ¼ pðx; tÞ=c2
s .
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Fig. 2. Schematic of the FV discretization with cell-centered lattice.
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2.2. Finite volume formulation

Shown in Fig. 2 is a schematic of the cell-centered tessellation [24,26]. The entire flow-domain is discretized into nonover-
lapping triangles of arbitrary shape and size but fixed in time, whose vertices are indicated by A;B;C; . . . (although, in prin-
ciple the foregoing formulation holds good for any polygonal tessellation). These triangles are the finite areas over which the
conservation of fa (Eq. (1)) is satisfied. The lattice center and the macroscopic flow variables are located at the geometric cen-
troid i; j; k; . . . of each triangle. The edges of the ith triangle are denoted by D‘imðm ¼ j; k; lÞ. Important differences between the
cell-centered TVD FV–LBE formulation and the LBE on a structured lattice are that, (1) here, a lattice is not a tessellation in
the sense that it may, or may not overlap on its neighbors, (2) a lattice defined at a centroid may intrude into a neighboring
triangle, and (3) there is no direct propagation from a lattice to its neighbor along the lattice-links in the directions of a’s;
rather, particle advection occurs across the common edge shared between two neighboring triangles, with appropriate
Cartesian projections of ea’s.

Denoting a generic cell ABC by Xi whose boundary is @Xi and area Ai ¼
R

Xi
dX, Eq. (1) is written in an integral form as

follows.
@

@t

Z
Xi

fadX ¼ �
Z

Xi

1
s

faðx; tÞ � f eq
a ðx; tÞ

� �
dX�

I
@Xi

ðea � nÞfa d‘ 8i ð6Þ
where n is a unit vector, locally normal to @Xi and pointing outward of Xi, and ‘ 2 @Xi. The set of distribution functions spa-
tially discretized and defined at the centroid ið� xiÞ of each finite volume Xi, is denoted by fa;iðtÞ. Further, the distribution
function fa;i is assumed to represent a cell-averaged value:
fa;iðtÞ ¼
1
Ai

Z
Xi

faðx; tÞdX : ð7Þ
Then, Eq. (6) may be written in a semi-discrete form as
d
dt
ðfa;iÞ ¼ Lðfa;iÞ ¼ LC

a;i þ L
A
a;i 8i; ð8Þ
where
LC
a;i ¼ �

1
Ai s

Z
Xi

½faðx; tÞ � f eq
a ðx; tÞ�dX ; ð9Þ

LA
a;i ¼ �

1
Ai

I
@Xi

FðfaÞd‘ ; ð10Þ
with the superscripts C and A referring to contributions from intracell particle–collision and intercell particle–advection,
respectively. In Eq. (10), FðfaÞ is the flux-density of fa across the boundary,
FðfaÞ ¼ ðea � nÞfa : ð11Þ
Evaluation of different terms in Eq. (8) is described in the following subsections.

2.3. Time-integration

Let us indicate the discrete fa;i’s at time levels t and t þ Dt by the superscripts n and nþ 1, respectively. Assuming that the
solution f n

a;i at time tn, is known, our goal is to compute the cell averages at the next time step tnþ1. Eq. (8) may be numerically
integrated using different time-discretizations:

(1) First-order, forward-difference, explicit (forward Euler) scheme:
f nþ1
a;i ¼ f n

a;i þ Dt L f n
a;i

� �
ð12Þ

where, Dt ¼ tnþ1 � tn is the discrete timestep. The CFL (Courant–Friedrichs–Lewy) criterion based on advection is given
by [26],

Dt ¼ CFL
Amin

ðjej þ cÞ lðxÞmin þ lðyÞmin

� � ; ð13Þ

where, the term CFL, be set less than 1 for stability, Amin is the minimal cell-area in the domain, lðxÞmin and lðyÞmin are the
projected lengths of the minimal area cell on the x and y directions, respectively. This imposes stringent grid-induced
stiffness (restriction) on the allowable time-step and local time-stepping [26] may be performed to accelerates the
convergence to steady state by advancing the solution at each cell in time at a CFL number near to local stability limit.
The collision term also enforce a stability criterion on forward Euler time-marching [37] and is given as,
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Dt 6 2s: ð14Þ

The smaller of the two time-steps obtained from Eqs. (13) and (14) may be used in the simulations.

(2) Second-order, central-difference, explicit leapfrog scheme:
f nþ1
a;i ¼ f n�1

a;i þ 2Dt L f n
a;i

� �
ð15Þ
(3) Second order, explicit Adams-Bashforth scheme:
f nþ1
a;i ¼ f n

a;i þ
Dt
2

3 Lðf n
a;iÞ � L f n�1

a;i

� �h i
: ð16Þ

This scheme requires saving fields from two previous time-steps and the time-step is limited by a CFL condition.

(4) Second-order TVD Runge–Kutta scheme [41]:
f ð1Þa;i ¼ f n
a;i þ DtL f n

a;i

� �
ð17Þ

f nþ1
a;i ¼

1
2

f n
a;i þ

1
2

f ð1Þa;i þ
1
2

DtL f ð1Þa;i

� �
ð18Þ
Gottlieb and Shu [41] discuss the accuracy, stability, and convergence of TVD Runge–Kutta schemes. Strategies like local
time-stepping may be employed to accelerate convergence. However, if the flow is unsteady, or is evolving towards a steady-
state, then a higher order scheme (e.g., 4th order Runge–Kutta) may be required for integrating Eq. (8). Recently, Ubertini
et al. [42] proposed a scheme, which allows for time-step more than an order of magnitude above the standard LBE stability
threshold.

For steady state problems, initial conditions are arbitrarily chosen. In the simulations presented in the present paper, all
velocities in internal centroids are initialized as zero. Pressure is taken as p0 (may be set to a representative value of 2.7). This
yields the initial values of the functions fa; f

eq
a . Like conventional lattice Boltzmann method, TVD FV–LBE is also time-

marched with collision- and streaming-steps carried out in two separate stages. Both of these fluxes are calculated from
the solution at tn and time-marching is performed thereafter.

2.4. Collision terms

Since the distribution functions fa’s (and their corresponding equilibrium counterparts, f eq
a ’s) are assumed to be uniform

over Xi, the integral in Eq. (9) may be evaluated using the trapezoidal rule:
LC
a;i ¼ �

1
Ai s

Z
Xi

faðx; tÞ � f eq
a ðx; tÞ

� �
dX ¼ �1

s
fa;i � f eq

a;i

� �
: ð19Þ
Here nonlinearity enters through the quantities f eq
a;i ’s which are functions of the local macroscopic flow variables (Eqs. (3) and

(5)). The collision term represents the microscopic form of the viscous transport term in macroscopic scale. The relationship
between ðs; mÞ is m ¼ sc2

s in the FV–LBE method, while it is m ¼ s� 1
2

	 

c2

s in the traditional LBE method on a square lattice (see
Ref. [43]). Here, the sound-speed of the model is cs ¼

ffiffiffiffiffiffi
RT
p

. Further, the relaxation time s is related to the Reynolds number of
the flow as,
s ¼ m=c2
s ¼

uref Lref

Re
1
c2

s
; ð20Þ
where uref is the characteristic flow-velocity, and Lref is the characteristic flow-dimension. We note in passing that, although
the BGK collision model is chosen here, in principle, the formulation can adopt any improved relaxation model, such as given
in Ref. [44].

2.5. Advective fluxes

Now we consider a key element of the present formulation: contribution to the balance of particle distribution function
fa;i within a cell Xi, due to microscopic streaming of particles across the cell-boundary @Xi. Eq. (10) may be discretized, noting
that the integration path @Xi is actually a collection of edges of length D‘imðm ¼ j; k; lÞ bounding the triangular cell Xi,
LA
a;i ¼ �

1
Ai

X
m

Fðfa;imÞD‘im; for m ¼ j; k; l ð21Þ
in which fa;im represents the value of function at the midpoint of the edge D‘im. Hence, one needs to consider the evaluation of
flux on an edge-by-edge basis for each cell. Two types of edges are possible, namely, those (1) in the interior, and (2) on the
boundary of the flow domain, the treatment of which follows subsequently.

Accurate evaluation of RHS of Eq. (21) consists of two steps. In the first step, the midpoint value fa;im of the solution is
reconstructed within Xi, including @Xi. The second step involves computing the flux density F along the edge. The solution
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may then be advanced to the next time level. Particular attention needs to be paid to solution reconstruction and flux-den-
sity evaluation, since accuracy of these operations determines the spatial accuracy of steady state problems.

2.5.1. Numerical flux on the edge
Higher-order extension of Godunov’s scheme to arbitrary shaped cells assumes piecewise polynomial approximations in

each cell (expanded about the centroid). Since these piecewise polynomials are discontinuous from cell to cell, along an edge
(see Fig. 3), two distinct values of the solution f L

a ; f
R
a

	 

, and hence, two values of F, may be reconstructed using Eq. (11) from

the left- and right-neighboring centroids across the edge. These generate waves traveling at characteristic speeds, one going
into the cell and the other going out. Therefore, a sequence of Riemann problems arises, but fortunately F is linear in the
present case. This nonuniqueness problem is overcome by supplanting the actual flux Fðfa;ijÞ across the edge by a uniquely
defined ‘numerical flux’ F f L

a ; f
R
a ;nij

	 

; where, nij is a unit outward normal to an edge shared between cell i and j. For this pur-

pose, the Roe’s flux-difference splitting scheme [21] for a solution to the approximate Reimann problem is employed:
Fðfa;ijÞ ¼
1
2

F f R
a

	 

þ F f L

a

	 

� jaðijÞj f R

a � f L
a

	 
� �
: ð22Þ
The reconstruction procedure for left and the right states of the solution f L
a ; f

R
a

	 

is described subsequently. The factor jaðijÞj is

the scaled characteristic speed, which is taken to be equal to the scaled microscopic velocity normal to the edge, ea � nij. Con-
sequently the corresponding scheme Eq. (21) becomes
LA
a;i ¼ �

1
Ai

X
m

Fðfa;imÞD‘im; for m ¼ j; k; l: ð23Þ
Calculation of the left and right states in Eq. (22) is the key to achieve stability and high-order accuracy.

2.5.2. Solution reconstruction; Limiters
A proper reconstruction procedure should satisfy several criteria, as discussed in, for example, Refs. [21,45]. Two most

commonly used reconstruction procedures are described below.
(a) Piecewise constant. The solution faðxÞ is assumed to be constant everywhere within the cell (including its edges), being

equal to its value at the centroid:
fa;ij ¼ fa;i� ; ð24Þ
which is only first order accurate. Here, i� indicates the upwind centroid for the edge ‘ir. Referring to edge BC in Fig. 3,
i� ¼
i for ea � nij > 0;

j for ea � nij 6 0:

�
ð25Þ
A space-centered, second-order scheme (used by Peng et al. [36]) has the form
fa;ij ¼ kfa;i þ ð1� kÞfa;j; ð26Þ
where j is the neighboring centroid across edge ij, and k is a linear interpolation weight, based on the distances of the cen-
troids i and j from the edge. Although only first order in space, the upwind scheme Eq. (24) is preferred over Eq. (26) owing to
better stability when dealing with strong gradients in solution. Central schemes produce wiggles and unphysical oscillations,
and possibly negative values of solution fa. However, the upwind scheme (1) exhibits numerical diffusion and viscosity
which may affect the simulation results, and (2) is inconsistent on the unstructured mesh.

(b) Piecewise linear. A second order accuracy is achieved by performing 2D, piecewise linear reconstruction of cell-aver-
aged data using a Taylor expansion:
faðxÞ ¼ faðxiÞ þ $fa;i � ðx� xiÞ for x 2 Xi; ð27Þ
A
B

C D

ij

j

i

nij

f i
L

f i
R

Fig. 3. Advective flux calculations; Reimann problem.
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but this requires a knowledge of the gradient of the solution $fa;i � ð$faÞxi
at the centroids. An upwinding form of Eq. (27) has

been used by Stiebler et al. [38] for FV–LBE simulations. The linear reconstruction step is computationally as expensive as the
collision and the propagation step, so the total nodal update cost increases by about 50% over that in the original LBE method.
In this, the value of reconstructed function varies linearly along an edge. It must be ensured that, such a reconstructed func-
tion does not attain a local extremum, but remains limited to within the range of the solution at the neighboring centroids.
This is a serious difficulty when dealing with solutions which have large local gradients, and tend to predict under/over-
shoots. This led to concepts of Total Variation Diminishing (TVD) and limiter functions. Essentially, the second term on
R.H.S. of Eq. (27) is replaced by a nonlinear function which adapts to the local solution and its gradient, to yield a high-quality
reconstruction on the cell boundary. As discussed in Section 1, this topic is well developed in the CFD of N–S approach, but
only currently being implemented in LBE.

In the form introduced by Roe [46] which has become quite popular, the left and right states of the solutions are recon-
structed as,
f L
a ¼ fa;i þ 1

2 Uijðfa;j � fa;iÞ
f R
a ¼ fa;j þ 1

2 Uijðfa;i � fa;jÞ

)
: ð28Þ
Here, fa;i represents the distribution functions at the centroid i, and fa;j are the distribution functions at its neighboring cen-
troid j. The nonlinear function UijðrÞ is known as flux limiter and r > 0 the consecutive gradient, to be discussed below. A wide
range of elegantly designed flux limiters have been developed and used for high-order solution reconstruction. Sweby [47]
has defined a second-order TVD-region. The upper boundary of this region is equivalent to superbee limiter (most compres-
sive) and that the lower boundary is equivalent to minmod limiter (most diffusive). Herein, following limiter-functions are
used for illustrative purpose.
ð1Þ Piecewise constant : UijðrÞ ¼ 0; ð29Þ
ð2Þ Piecewise linearðwithout limiterÞ : UijðrÞ ¼ 1; ð30Þ
ð3Þ Minmod : UijðrÞ ¼ max½0;minðr;1Þ�; ð31Þ
ð4Þ Superbee : UijðrÞ ¼max½0;minð2r;1Þ;minðr;2Þ� : ð32Þ
Although, the use of other limiter-functions such as MUSCL (monotonic upwind-centered scheme for conservation laws) [48]
or Venkatakrishnan [49] is similar.

To achieve a high-order reconstruction, the r-factor requires to be evaluated using solution values at three consecutive
locations, collinear along the normal nij; this is easily determined on a structured mesh. Herein lies the main difficulty of
implementing TVD schemes on unstructured mesh, and a few suggestions have been offered in the literature [50,51]. We
successfully implemented a technique recently suggested [52] to evaluate r-factor. Shown in Fig. 4 is a schematic of the sit-
uation in case of a CV whose centroid is i, and solution being reconstructed on the edge BC. Here the task is to identify a
‘virtual’ upwind node when ea � nij?0, but the positive case is considered for illustration. This is achieved by extending
the line joining centroids i and j in the upwind direction, by a distance equal to that between i; j, and indicated as s in
Fig. 4. This yields the virtual upwind location iþ lying inside the cell whose centroid is i�. Then the r-factor used in Eqs.
(31) and (32) is evaluated as
r ¼ �di� iþ � $fa;i�

fa;j � fa;i
þ fa;i � fa;i�

fa;j � fa;i�
; ð33Þ
where, di�iþ is the vectorial distance between iþ and i�. To use Eq. (33), the gradient of the solution at the virtual upwind cen-
troid i� is necessary. This is reconstructed from a least squares approach as described in the following.
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Fig. 4. Finding the ‘virtual’ upwind centroid i� to calculate r-factor.
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2.5.3. Gradient reconstruction
At each centroid, the gradient of the solution must be determined such that the solutions are optimally extrapolated to

the edges. Different procedures have been proposed in the literature for a 2D linear reconstruction of solution gradient at
centroid. However, a least-squares minimization method [38] is found suitable and sufficient in the present work. Herein,
the gradient in Eq. (33) is chosen such that, the reconstructed value of the distribution function at the neighboring centroids
becomes as close as possible to its actual value. Following Stiebler et al. [38], the optimal estimation of $fa;i is the one that
minimizes the total squared-error:
min
$fa;i

X
m

wi;mffa;m � fa;i � $fa;i � ðxm � xiÞg2 ð34Þ
where, m ¼ j; k; l indicates the three neighboring centroids of the cell i; and wi;m ¼ 1=ðxm � xiÞ2 is a geometrical weighting
factor. These calculated gradients of the distribution functions are used in the Eq. (33) to obtain the consecutive gradient.

2.6. Treatment of boundary conditions

As shown in Fig. 5(a), let ABC be a cell, such that the edge AB forms a part of the boundary of the flow-domain. Here
we illustrate the treatment for a no-slip boundary, and other conditions may be similarly treated. A ghost cell ABC0 is
constructed as the mirror image of the cell ABC, as shown. The centroids of cells ABC and ABC’ are denoted by i and
i0, respectively. The advection flux through the boundary edge needs to be calculated. An accurate estimation of the dis-
tribution functions at the mirror-cell centroid ði0Þ should be performed which may mimic the physical boundary condi-
tion along AB. For further illustration, refer to Fig. 5(b), which shows the centroids i and i0 with the fictitious boundary
node, b. We implement the non-equilibrium bounce-back rule [31] at the fictitious boundary node to satisfy the bound-
ary condition for boundaries in the co-ordinate directions. The flow-variables ðu; v; pÞ at the node i and at the boundary
are known. These quantities at the mirror-cell centroid ði0Þ may be calculated using extrapolation and corresponding
equilibrium distribution functions f eq

a;i0

� �
may be set at i0. Following set of equations are used to calculated the distribu-

tion functions at the fictitious boundary node, b. The unknown distribution functions for the shown geometrical-case in
Fig. 5(b) and with D2Q9 model are f2;b; f3;b and f4;b.
fa;b ¼ 0:5 fa;i þ f eq
a;i0

� �
; a – 2;3;4

f2;b ¼ p0ub=2þ p0vb=6þ f6;b þ ðf5;b � f1;bÞ=2;
f3;b ¼ 2p0vb=3þ f7;b;

f4;b ¼ �p0ub=2þ p0vb=6þ f8;b � ðf5;b � f1;bÞ=2:

9>>>>=
>>>>;

ð35Þ
These unknown distribution functions obtained at the fictitious boundary node, b are extrapolated to the mirror-cell centroid
ði0Þ. We use simple bounce-back rule for boundaries not parallel to the co-ordinate directions. For an improved boundary
treatment for such an inclined boundaries, authors here suggest, first for rotation of the distribution function space coincid-
ing with an inclined surface and then following the implementation of non-equilibrium bounce-back rule. The buffer layer is
used by Ubertini and Succi [37], to exploit the application areas of flow with open boundaries. The use of a single buffer layer
to implement constant longitudinal gradient of the flow variables has been made. For periodic boundary condition it has
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been ensured that the triangular elements at the two boundaries are mirror-cells of each other. Therefore, the flux of distri-
bution functions leaving one boundary cell through its boundary edge, enters through the other cell boundary.

Shown in Fig. 6(a) is a cell ABC residing at the boundary. The calculations of the distribution functions at the mirror-cell
centroid ði0Þ has been explained earlier in the beginning of this section. The unknown distribution functions should be cal-
culated at the potential ‘virtual’ upwind nodes ðiþ; i�Þ, which are lying outside the computational domain (see Figs. (4) and
(6)). An extrapolation of distribution-functions from interior to the boundary and then from boundary to these ‘virtual’ up-
wind nodes may be performed.

3. Numerical implementation

The TVD FV–LBE formulation has been coded in C++ language; the computations were parallelized using ‘domain decom-
position’ technique, with the implementation of Message Passing Instructions (MPI) library subroutines. Our code basically
evolved from its predecessor for the structured LBE implementation [53]. The unstructured mesh was generated using the
commercial software FEMLab. After the mesh is generated, the data (on connectivity, etc) is sorted in a preprocessor to
decompose the entire flow domain into a given number of subdomains for parallelization. The individual centroids and
the links bounding these are tagged as one of the three types: an internal node, a boundary node, or an inter-processor bor-
der node. Our preprocessor consumes just about 2% of total computing time of a steady state run. Each processor performs
computations on a certain subdomain and exchanges information with other processors along the borders separating the
domains. By using a ghost layer of CV’s in the surrounding of the subdomain, the advection step can be isolated from the
data exchange step. It was ensured that each processor is assigned an approximately uniform number of mesh points, so that
the load among different processors is balanced. After the advection step, the values in the ghost layer are sent to the neigh-
boring processor. Hence, the computation is independently carried out centroid-by-centroid in the TVD FV–LBE method. Due
to the local character of the LBE, the parallelization by simple domain decomposition is straightforward and brings good re-
sults concerning the parallel speed-up.

Like conventional lattice Boltzmann method, TVD FV–LBE simulation is also time-marched with collision and streaming
steps. Both of these fluxes are calculated using the latest solution available, and then time-marching is performed to obtain
solution at the next time level. At the end of one time-step, individual processors deliver the solution within their respective
subdomains at the new time level. This data is post-processed to prepare a single file for graphical analysis.

4. Results and discussion

The computer code with the new LBE formulation has been used to simulate four benchmark problems. Computations
were carried out to investigate convergence and accuracy of solution, and efficiency of parallelization. The results are pre-
sented and discussed in this section.

4.1. Laminar flow in a 2D, plane channel

Poiseuelle flow in a 2D channel is a simple benchmark for flows with open boundaries. At the inlet, we imposed a fully
developed profile for the x-velocity (parabolic in y-direction), and the pressure was linearly extrapolated from the interior
(a)

B

C

D

j

i

i+

E

A

sij

sij

k

s
ik

s
ik

i+

i’

i-

sii’

C’

sii’b

α,i
f

2,b
f

3,b
f

4,bf

(u, v, p)b

(b)

α,if (u, v, p)
i

i

j

i+

+

α,jf
(u, v, p)j

b

Fig. 6. (a) Virtual upwind nodes to calculate r-factor at the boundary and (b) distribution functions at the virtual upwind node.



5272 D.V. Patil, K.N. Lakshmisha / Journal of Computational Physics 228 (2009) 5262–5279
nodes. At the outlet, the pressure was fixed whereas the velocities were extrapolated from interior nodes. On the two side-
walls, the no-slip boundary condition was imposed for velocities whereas the normal gradient of pressure was taken as zero.
Shown in Fig. 7(a), is the computed velocity profile at the outlet section whereas in Fig. 7(b), is the centerline pressure along
the length of the channel for Re = 40 (Re is based on channel height and maximum inlet velocity).

The flow was simulated with three mesh systems of progressively higher refinement (7376, 30728 and 53816 control vol-
umes, respectively). The number of elements in the y-direction are progressively refined. The three nonuniform grid-systems
used has 20, 40 and 60 elements in the y-direction. Fig. 7 shows a good convergence of the numerical solution towards the
exact solution. These simulations were done using the superbee limiter. On the finest mesh, the computed value of the total
momentum leaving the exit plane,

Rþh=2
�h=2 qðyÞuxðyÞdy, had an error of about 2.65% of the exact value. Further, the average pres-

sure at the inlet, 1
h

Rþh=2
�h=2 pðyÞdy was computed within 0.28% of the exact value.

4.1.1. Convergence history
Fig. 8(a) compares the convergence history during the first non-dimensional time of t ¼ 0:15ðt ¼ N�Dt; N� being number

of time-steps) of the solution using the limiter functions described earlier in Section 2.5.2. In these simulations, we used a
timestep of Dt ¼ s=10 (see Ref. [37]). The r.m.s of the change in pressure field over the entire flow-domain is taken as a cri-
terion to examine the approach of solution to steady-state:
Fig. 7.
Grid3 =
Dptot ¼
1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

pn
i � pn�1

i

	 
2
s

; ð36Þ
where, Dp is the root-mean-square change in pressure, pn is the pressure at time-level n, and N is the total number of control
volumes. In Fig. 8(a), the minmod limiter shows better convergence. This convergence history has a periodic behavior. The
r.m.s. change in pressure falls to the value of 10�11 and tends to zero for this limiter function. The superbee limiter has an
oscillatory behavior in the range of 10�8 to 10�9. These simulations were performed on Grid 2. Fig. 8(b) shows the conver-
gence of superbee limiter for different grid-systems studied. The poorer convergence property of superbee limiter may be
attributed to its non-differentiable functional form [49].

4.1.2. Parallel efficiency
The efficiency of parallelization was studied with reference to the channel flow problem. The flow domain was partitioned

into 2, 4, 8, 16, 20, 28 and 32 number of subdomains, each of which was assigned to individual computer processors. Ghost
nodes were defined at the interface of two subdomains, for data-exchange. The parallel computations were carried out on an
IBM P720 cluster. The total CPU time for 10,000 timesteps has been compared with reference to the total CPU time required
for the same number of timesteps in a 2-processor simulation. Fig. 9 shows the speedup gained by the parallel computations,
as well as a linear (ideal) variation. It is observed that the gain in speedup is almost proportional to the number of processors
employed. However, when more than 14 processors are employed, there is a dip in the gain, due to the fact that increasingly
more CPU is consumed in data-exchange, at the cost of useful CPU spent in actual calculations. However, this effect decreases
as the problem size (total number of cells) increases.

4.2. Unsteady Couette flow

The configuration of the unsteady Couette flow is similar to that of the 2D plane channel flow, but now the flow is driven
by the top plate moving with a constant velocity U along the x-direction, and the bottom plate is stationary. The non-equi-
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librium bounce-back scheme is applied to the top and bottom walls, and the periodic boundary condition is applied in the x-
direction. The domain has 4 triangular elements in x-direction, and 256 elements in y-direction. The Reynolds number of this
flow is defined as, Re ¼ HU=m ¼ 10, where H is channel height in y-direction. We set H ¼ 1:0;U ¼ 0:1, and with Dt ¼ 0:0002.
Initially, the velocity is set to zero in the whole computational domain. The expression for analytical solution of unsteady
Couette flow may be found in [10]. Fig. 10 shows comparison of velocity profiles at different non-dimensional times using
Eq. (12) along with the analytical solution at the corresponding times. The average-error at each of these times between the
simulations and the analytical solution is found to be with 0.4–0.7%. We also have estimated numerical diffusion and it is
found to be less than 1% for all the simulations performed.

Further, we have simulated the unsteady Couette flow by using TVD–RK2 time-stepping. It was found that the time step
for the TVD–RK2 scheme may be taken as 2.1 times greater than that for the Euler explicit scheme. But, with the TVD–RK2
scheme, calculations have to be done two times in each time-step (see Eqs. (17) and (18)). We have also investigated the
effect of different relaxation times by changing the Reynolds number of the flow. The relaxation time s has been set to
0.01, 0.002, 0.001. The numerical results are within 1% of the analytical solutions at these relaxation times. This verifies
the conclusion made by Ubertini et al. [43] on the residual viscosity not being contaminating the relation of ðs; mÞ even with
s as low as 0.001.

4.3. Lid-driven flow in a 2D square cavity

The third problem we investigated is the lid-driven flow in a 2D square cavity. Previously, LBE simulations have been
extensively validated [31,53,54]. The N–S solution results of Ghia et al. [55] are usually taken as a benchmark data. Except
for very high Reynolds numbers ðRe P 5000Þ, the LBE simulation (on structured mesh) results have compared excellently
with the N–S results. Here, Reynolds number is defined as Re ¼ UL=m, where U is the lid-velocity, L the cavity width, and
m the kinematic viscosity of the enclosed fluid in motion. Results of LBE simulations on unstructured mesh were presented
by Ubertini and Succi [37], for a maximum Reynolds number of 1000.
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4.3.1. Grid-convergence studies
To investigate the grid-convergence of the numerical solution, the simulations have been performed on systematically

refined grids. We have carried out the grid-refinement starting with a coarse mesh consisting of 322 number of uniform tri-
angles. Successively, we divided each triangular element into four triangles (which is equivalent to dividing each edge of the
triangle into two parts), as shown in Fig. 11(a). The resultant grid-systems have 642;1282 and 2562 number of uniform tri-
angles. The lid velocities have been set to u ¼ 0:1;v ¼ 0 and remaining computational domain has been initialized with
u ¼ 0;v ¼ 0. The distribution functions at the centroid of each element have been initialized with the equilibrium values cor-
responding to the initialized flow field. The Reynolds number has been set to 3200. We have used Dt ¼ 3s=2 with a forward
Euler time-stepping for the temporal discretization. Fig. 11(c and d) shows normalized u and v velocity profiles along ð0:5; yÞ
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and ðx;0:5Þ at Re = 3200, for successively refined grids, respectively. Also, the corresponding N–S solutions by Ghia et al. [55]
using 1282 grid points has been shown in Fig. 11(c and d). For the same number of triangles, the present scheme fails to
achieve the expected accuracy corresponding to Ghia et al.’s [55] result. This may be because the gradients of the distribution
functions were established with first-order procedure in Eq. (34). Also, the first-order extrapolation of the distribution func-
tions at virtual upwind nodes limits the overall accuracy of the scheme. The L1 and L2 norms of the error in velocity for
322;642 and 1282 number of uniform triangles with respect to the solution on 2562 grid has been shown in Fig. 11(b).
The linear-fall of error norms (E1 and E2) on log–log scale for cavity flow problem has also been previously obtained by
Hou et al. [54]. The velocity profiles shown in Fig. 12(d) are by using 2562 number of uniform triangles.

4.3.2. Validation for different Reynolds numbers
Shown in Fig. 12(a–c) are the comparison of velocity profiles at Re = 100, 400 and 1000, from the present simulations and

those from Refs. [37,55]. The mesh system used consists of 56528 number of triangular elements. The Dt has been set to s=6.
The use of Eq. (12) has been made for time integration with a superbee limiter to obtain the results shown in Fig. 12. As it
may be seen, the present results are closer to the N–S results of Ghia et al. [55] than are the results of non-TVD FV–LBE [37],
which seems to plagued by nonphysical numerical diffusion.

Table 1 lists the x- and y-coordinates of the centers of the primary eddy, right corner eddy and left corner eddy. It is evi-
dent that the present formulation captures the location of the eddies accurately for all the Reynolds numbers studied. Fig. 13
shows the streamline pattern for lid-driven flow at Re = 1000, 3200, from which it is observed that important flow features
like the corner eddies have been resolved well. In Table 2, we have compared the horizontal (width) and vertical (height)
extents of the corner eddies, as computed presently and from Ref. [55], respectively. At this stage, we have not investigated
whether the comparison improves with further mesh refinement. The explicit time integration of advection term is mainly
limited by CFL criterion. To improve on the total wall-clock time required to reach steady state, implicit treatment of the
advection term is a must. An entry to the methodology of implicit upwind schemes may be obtained from Ref. [56].

4.4. Uniform flow over a 2D circular cylinder

Now, the results of the fourth flow problem we simulated in this work, namely the uniform flow over a 2D circular cyl-
inder, are presented. Viscous flow in the wake of a circular cylinder has been visualized and fully analyzed experimentally
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Table 2
Lid-driven flow inside a 2D cavity (Re = 1000, 3200). Size of the corner eddies.

Re Reference Bottom Left Bottom Right Top Left

Width Height Width Height Width Height

1000 Ghia et al. [55] 0.2188 0.1680 0.3034 0.3536 – –
Present 0.2167 0.2005 0.2888 0.3431 – –

3200 Ghia et al. [55] 0.2844 0.2305 0.3406 0.4102 0.0859 0.2057
Present 0.3146 0.2443 0.3018 0.3925 0.0494 0.1819

Table 1
Lid-driven flow inside a 2D cavity. Location of the centers of primary eddy and corner eddies with reference to the bottom left corner of the cavity. PE: primary
eddy; BR: bottom right; BL: bottom left; TL: top left.

Re Eddy Ghia et al. [55] Hou et al. [54] Patil et al. [53] Present

PE (0.6172, 0.7344) (0.6196, 0.7373) – (0.6161, 0.7296)
100 BR (0.9453, 0.0625) (0.9451, 0.0627) – (0.9451, 0.0574)

BL (0.0313, 0.0391) (0.0392, 0.0353) – (0.0345, 0.0324)
PE (0.5547, 0.6055) (0.5608, 0.6078) (0.5625, 0.6133) (0.5506, 0.5972)

400 BR (0.8906, 0.1250) (0.8902, 0.1255) (0.8906, 0.1289) (0.8862, 0.1258)
BL (0.0508, 0.0469) (0.0549, 0.0510) (0.0507, 0.0507) (0.0526, 0.0471)
PE (0.5313, 0.5625) (0.5333, 0.5647) (0.5391, 0.5703) (0.5259, 0.5777)

1000 BR (0.8594, 0.1094) (0.8667, 0.1137) (0.8750, 0.1250) (0.8778, 0.1261)
BL (0.0859, 0.0781) (0.0902, 0.1059) (0.0937, 0.0859) (0.0904, 0.0989)
PE (0.5165, 0.5469) – (0.5195, 0.5469) (0.5189, 0.5441)

3200 BR (0.8125, 0.0859) – (0.8320, 0.0898) (0.8619, 0.0971)
BL (0.0859, 0.1094) – (0.0859, 0.1250) (0.0993, 0.0963)
TL (0.0547, 0.8984) – – (0.0316, 0.8689)
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Fig. 13. Streamline pattern of the 2D lid-driven cavity flow; (a) Re = 1000 and (b) Re = 3200.
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[57,58]. In the present work, the steady state solutions are studied at three values of the Reynolds number, Re = 10, 20, 40,
respectively. Here Re is defined with reference to the cylinder diameter and incident uniform velocity. Fig. 14 shows part of
the mesh system employed for these simulations. The mesh consists of 89608 number of triangular elements. The time-inte-
gration has been performed using TVD–RK2 procedure with Dt ¼ s=10. Superbee limiter has been utilized to simulate the
flow for the set of Reynolds numbers considered. We used the bounce-back scheme to impose boundary condition on the
cylinder surface. Table 3 compares the geometrical characteristics ðL=a; hsÞ and dynamical parameters ðCD;CPðpÞ and
CPð0ÞÞ of the flow field at steady state, with previous experimental and computational results. We observe that the present
results are within reasonable accuracy in all the cases studied. Fig. 15(a–c) shows the stream function plots at Re = 10, 20 and
40. The coefficient of pressure ðCpÞ is compared in Fig. 16. This demonstrates that a good accuracy in solution is achieved
with the present formulation of the wall boundary conditions on the cell-centered mesh system. Further, we have performed
a series of calculations to investigate the effects of limiter-function values ðUðrÞÞ used in Eq. (28) onto the cylinder wake
parameters. We chose to perform this test with the grid-system shown in Fig. 14 at Re = 40. Fig. 15(d) shows the extent
of the wake length for four representative limiter-functions, (i) UðrÞ ¼ 0, denoted by L1; (ii) UðrÞ ¼ 1, denoted by L2; (iii)





UðrÞ ¼minmod, denoted by L3 and (iv) UðrÞ ¼ superbee, denoted by L4. Compared in Table 4 are geometrical parameters
ðL=a; hsÞ, dynamical parameter ðCDÞ and % error on L=a predicted with the experimental result of Ref. [58]. Negative value
signifies under-prediction over Ref. [58] value. It is evident from this exercise that the results obtained by using superbee
limiter are far more accurate than those obtained by using either of UðrÞ ¼ 0;1;minmod limiter-functions for the given
mesh-system.

5. Conclusions

A finite volume formulation has been presented for simulation of the LBE on unstructured mesh. Specifically, the intercell
advection of particle distribution function is calculated with a high-resolution, TVD scheme. The TVD FV–LBE results are well
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